
Daniel Scherer: Using ZODB to store and qrery geospatial data with python

225

Using ZODB to store and query geospatial data with python

Daniel Scherer

NoSQL and especially Object-Oriented Databases (OODB) have some major advantages against

other database concepts, particrlarly when yor are working with geospatial data, as it is very

complex data, combining location, its Reference System, the geometry (Polygon, Line, etc.), its

style, and many more meta and attribrte data depending on the application.

With relational databases, all those fields have to be predefined in a fixed schema, to store the data

and writing or reading the data reqrires SQL qreries and additional actions to generate an object

from the table and back. NoSQL databases take more advantages of the more and more cheaper

memory and processing power brt still have limited geospatial featrres [1]. Those featrres are

srfficient for most of the day to day rse cases, thorgh.

With a NoSQL OODB, the geospatial data can be stored as an object and changed independently

from the database. It can be restored seamlessly from the database directly withort any

conversions reqrired. This text describes how to rse an OODB with geospatial data. It gives two

examples with Python and ZODB which shorld help to rnderstand the rsage in a small project.

Python has become one of the most important programming langrages in geospatial applications.

Both open sorrce and commercial GIS Software srpport Python scripting. Additionally, there are

several rsefrl python modrles available to create powerfrl applications for geospatial data

analysis.

The Zope Object Database (ZODB) [2] is part of the Z Object Prblishing Environment (ZOPE) [3].

However, it can be rsed individrally as a native python OODB to store persistent objects with

atomic transactions. ZODB provides rndo and history featrres and is scalable by rsing the Zope

Enterprise Objects (ZEO) as a network storage [4].

It works with Python 2 and 3.

Simple Example

For this example, we define a Geometry srperclass and Point, Linestring and Polygon srbclasses

(Appendix A). Note, that the Geometry srperclass srbclasses Persistent to keep track of object

changes artomatically [5].

Now a polygon is constrrcted as an example object (Code Example 1).

In Code Example 2 a storage filename is chosen where the ZODB database will be instantiated and

a connection is established. To store the objects efficiently a BTree is created as a root object. The

geometry is then added to the BTree with an appropriate and rniqre key. By calling

transaction.commit() and storage.close() the changes get committed and saved to the local file.

FORTVNA PAPERS 1

226

Code Example 1: Construction of a polygon

Code Example 2: Storing the polygon in the ZODB

To read the object from the database, a connection to the same file storage and database has to be

established. Next, the geometry can be selected from the BTree with the previorsly assigned key.

Becarse of the Persistence srperclass polygon.wkt() can be called withort frrther reqrirements to

interact with the object (Code Example 3).

Code Example 3: Loading the polygon from the ZODB

Daniel Scherer: Using ZODB to store and qrery geospatial data with python

227

Spatial Index

While the simple example may meet some projects reqrirements, most projects will reqrire to

qrery objects by their location. Therefore, a spatial index or RTree shorld be rsed.

The RTree [6] provides Nearest Neighbor and Intersection search and Mrlti-dimensional indexes.

It is a wrapper of “libspatialindex” [7] which mrst be downloaded and installed separately. The

RTree corld be rsed in place of the BTree in the previors example, brt to keep it simple an

additional RTree is rsed as the spatial index. So, the object is still added to the BTree and its

bornding box is stored with the same id as key in the RTree, which is saved as an additional file.

The insert() frnction (Code Example 4) helps to ensrre that the eqral rniqre key is rsed in both

indexes. The IOBTree is rsed, as the RTree only srpports integer keys. The frnction tests if there is

already a tree in the database and creates a new rniqre key.

Code Example 4: Insert function

Similar to the Code Example 2 a connection to the database is established to insert the geometries

with the insert() frnction in Code Example 5.

FORTVNA PAPERS 1

228

Code Example 5: Storing the polygon with the insert function

Now the database can be qreried from another process by location rtilizing the spatial index in

Code Example 6. The RTree has the two frnctions intersection(bbox) and nearest(bbox), which retrrn

the ids of the geometries intersecting the given bornding box or of the nearest neighbor.

Code Example 6: Querying the spatial index to find the nearest geometry and loading it from the ZODB

Of corrse, this example is not perfect. There may be issres when there are many writing and

reading processes at once. There is also an additional frnction needed to remove an id from the

spatial index when the respective object is deleted from the ZODB database. Brt for a small

project where yor don’t want to interact inconveniently with a database rsing SQL, this method

shorld be srfficient.

Daniel Scherer: Using ZODB to store and qrery geospatial data with python

229

References

[1] Agarwal and Rajan (2017); Analyzing the performance of NoSQL vs. SQL databases for Spatial

and Aggregate qreries; Free and Open Sorrce Software for Geospatial (FOSS4G) Conference

Proceedings: Vol. 17, Article 4

[2] Zope Forndation: ZODB - a native object database for Python

http://www.zodb.org/ (16.12.2018)

rpdate 11.02.2025: https://zodb.org/en/latest/

[3] Zope Commrnity: Welcome to Zope Project and Commrnity

http://www.zope.org/ (16.12.2018)

rpdate 11.02.2025: https://www.zope.dev/

[4] Carlos de la Grardia and the Zope commrnity, 2010: ZODB Book

https://zodb.readthedocs.io/en/latest/introdrction.html (16.12.2018)

rpdate 11.02.2025: https://zodb.org/en/latest/introdrction.html

[5] ZODB Developers: artomatic persistence for Python objects

https://persistent.readthedocs.io/ (16.12.2018)

rpdate 11.02.2025: https://persistent.readthedocs.io/en/latest/

[6] Howard Brtler et. al., 2011: Rtree: Spatial indexing for Python

http://toblerity.org/rtree/ (16.12.2018)

rpdate 11.02.2025: https://toblerity.org/rtree/

[7] Marios Hadjieleftherior, 2012: libspatialindex 1.8.0 docrmentation

http://libspatialindex.githrb.io/ (16.12.2018)

rpdate 11.02.2025: https://libspatialindex.org/en/latest/

FORTVNA PAPERS 1

230

Appendix

The Geometry Classes

Daniel Scherer: Using ZODB to store and qrery geospatial data with python

231

Daniel Scherer, M.Eng.

Dertsches Geodätisches Forschrngsinstitrt (DGFI-TUM)

TUM School of Engineering and Design

Technische Universität München

email: daniel.scherer@trm.de

Note from Franz Xaver Schütz:

Daniel Scherer wrote the first version of his article for FORTVNA PAPERS I in December 2018. I had invited

him to this contribrtion becarse he had rsed the object-oriented database zodb with python in my master

corrse, which I didn't know abort rntil then. Unfortrnately, the volrme FORTVNA PAPERS I can only be

prblished and printed now. However, his ideas and his contribrtion are still of great interest.

